Outlier robust system identification: a Bayesian kernel-based approach
نویسندگان
چکیده
In this paper, we propose an outlier-robust regularized kernel-based method for linear system identification. The unknown impulse response is modeled as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. To build robustness to outliers, we model the measurement noise as realizations of independent Laplacian random variables. The identification problem is cast in a Bayesian framework, and solved by a new Markov Chain Monte Carlo (MCMC) scheme. In particular, exploiting the representation of the Laplacian random variables as scale mixtures of Gaussians, we design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods.
منابع مشابه
A robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملKernel ellipsoidal trimming
Ellipsoid estimation is important in many practical areas such as control, system identification, visual/audio tracking, experimental design, data mining, robust statistics and statistical outlier or novelty detection. A new method, called Kernel Minimum Volume Covering Ellipsoid (KMVCE) estimation, that finds an ellipsoid in a kernel-defined feature space is presented. Although the method is v...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملLocal multivariate outliers as geochemical anomaly halos indicators, a case study: Hamich area, Southern Khorasan, Iran
Anomaly recognition has always been a prominent subject in preliminary geochemical explorations. Among the regional geochemical data processing, there are a range of statistical and data mining techniques as well as different mapping methods, which serve as presentations of the outputs. The outlier’s values are of interest in the investigations where data are gathered under controlled condition...
متن کاملUNIVERSITY OF SOUTHAMPTON Kernel Ellipsoidal Trimming T 8 . 11 . 10 - 01 /
Ellipsoid estimation is an issue of primary importance in many practical areas such as control, system identification, visual/audio tracking, experimental design, data mining, robust statistics and novelty/outlier detection. This paper presents a new method of kernel information matrix ellipsoid estimation (KIMEE) that finds an ellipsoid in a kernel defined feature space based on a centered inf...
متن کامل